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ABSTRACT

Vibration of a statically loaded, inherently compensated hydro-
static journal bearing due to oscillating exhaust pressure is investi-
gated. Both angular and radial vibration modes are analyzed. The
time-dependent Reynolds equation governing the pressure distribution
between the oscillating journal and sleeve is solved together with
the journal equation of motion to obtain the response characteristics
of the bearing. The Reynolds equation and the equation of motion are
simplified by applying regular perturbation theory for small displace-
ments. The numerical solutions of the perturbation equations are ob-
tained by discretizing the pressure field using finite-difference
approximations with a modified 1ine-source model which excludes
effects due to feeding hole volume. An iterative scheme is used to
simultaneously satisfy the equations of'motion for the journal. The
results presented include Bode plots of bearing-oscillation gain and
phase for a particular bearing configuration for various combinations
of parameters over a range of frequencies, including the resonant

frequency.




NOMENCLATURE

Feeding hole diameter

Clearance between journal and sleeve
Discharge coefficient

Eccentricity

Resonant frequency

Film thickness

Dimensionless film thickness
Specific heat ratio

Mass flow rate thru a feeding hole
Mass flow rate in film of angular width 2ae
Dimensionless mass flow rates

Film pressure

Ambient pressure

Exhaust pressure

Nozzle pressure

Supply pressure

Dimensionless pressure

Journal radius

Universal gas constant

Time

Temperature

Axial displacement of journal

Load supported by journal




X Circumferential coordinate

Z Axial coordinate

Greek Symbols

o Amplitude factor for angular vibration

B Amplitude factor for radial vibration

s Perturbation factor

€ Eccentricity ratio

u Dynamic viscosity of air

w Angular frequency of vibration

A Bearing number

o Squeeze number

T Dimensionless time

) Dimensionless circumferential coordinate -
z Dimensionless axial coordinate (see Fig. 3 for location

of 21,%2 and ;3)

Subscripts

0 Zeroth-order

1 First-order

Superscripts

' Quantities within the region Lo < T < T3 (outer bearing)
* Value of amplitude factor as w -+ O



I.  INTRODUCTION

There is currently considerable interest in gas bearing techno-
Togy for application to rotating and reciprocating machinery for
space-flight. Linear gas bearings have been proposed in Stirling
cycle cryogenic cooler systems for infrared sensing satellites [1].
The bearings in these systems must allow long-term, noncontacting
sUpport of reciprocating components in the Stirling cooler. One such
cooler design subjects a hydrostatic journal bearing to sinusoidal
fluctuations in bearing exhaust pressure. The present paper focuses
on an analysis of the static and dynamic characteristics of such
pressure-excited bearings.

Of interest in the present research are the angular and radial
forced vibration modes of a statically loaded, inherently compensated
hydrostatic journal bearing due to oscillating exhaust pressures. The
angular mode of vibration in the case of 180° phase shift between
exhaust pressures in a dual plane of feeding holes is depicted in
Fig. la. Phase-shifted exhaust pressures can be physically achieved
by segregating the exhaust systems of the two feeding planes as
opposed to a common exhaust. The radial forced vibration mode of
the above bearing when no phase shift is present is shown in Fig. 1b.

There are numerous analyses in the literature for various ex-
ternally pressurized gas bearing systems. An excellent review of
work up to 1969 is contained in the paper by Gross [2]. Majumdar

[3] reviews the technology up to 1978. The citations compiled by




NITS [4,5] are a useful source of other material. Several authors
[6,7,8,9,10,11] have analyzed the static and dynamic characteristics
of inherently compensated bearings. Particularly noteworthy in this
regard are the analyses of Lund [9,10] and of Majumdar [11] for orfice
and inherent]y compensated externally pressurized journal bearings.
Angular vibration or dynamic misalignment is discussed in only a
limited number of papers [9,11,12,13]. The problem of oscillating
exhaust or supp]& pressures seems to have escaped the attention of
investigators entirely. Moreover, no linearized analyses have
appeared which consider the case of vibration about an initially
deflected journal position(caused by static foading).

The solution to the aforementioned problem of angular vibration
with segregafed phase-shifted oscillating exhausts is of particular
importance since it has been identified as critical to the performance
of such a bearing used to support the power piston of a candidate
Stirling cooler design. It is therefore important to establish the
static load-response characteristics, resonant frequencies and vibra-
tion amplitudes for the piston.

The theory developed in the present work is applied to a basic
1inear hydrostatic demonstration bearing designed by Mechanical
Technology Incorporated (MTI) for NASA [14]. MII conducted extensive
proof-of-concept testing on this bearing configuration under steady
pressurization. The present research will eventually use this same
bearing in an experimental investigation of the dynamic effects

studied analytically herein.




II. THEORY AND BASIC EQUATIONS

Governing Equations

The nondimensional Reynolds equation for the laminar, viscous

gas film of the externally pressurized linear journal bearing shown

in Fig. 2 is
38 20 3T 13 AT 3T
for (P,Pl)

where H = 1 + ecosé
and where the nondimensional'dependent and independent variables are

as follows:

The bearing and squeeze number parameters are defined as

pe BB 1§uwR2
Cc pa Cc pa

P is replaced by P' in the region ¢, < z < z3, and A = 0 in the
present calculations.
Boundary Conditions

The boundary conditions which apply to equation (1) are as
follows: From circumferential symmetry and continuity requirements,

the boundary conditions in 6 are

_a_P (09C) = ﬂ (")C) =
36 26

P' (0,z) . 3P' (mz) .
g_e(c)__g_s_(c)_o (2)



The boundary conditions in z are applied at the edges of the
film t=¢q and z=z4, and at the plane of feeding holes E=C,.
For the osci]]ating exhaust pressure, the exhaust pressure oscillates
at a fixed amplitude accordinghto

Py=1+ se'T (3)

and therefore, at the edge of the film
P(e,zq) = P' (6,54) = 1+ 6e'" (4)

~ At the plane of feeding holes the pressure is assumed continuous and

consequently
P(esz ) = P'(0,2,) (5)

~ The remaining feeding plane boundary condition involves the
derivatives of P and is different depending on whether the location
considered is outside the feeding hole itself. Majumdar [11,15] has
analyzed similar problems by a so called "point source" approach in
which this distinction is clearly drawn.. However, this approach also
requires consideration of the two-dimensional Reynolds equation and
a solution algorithm for it which is able to resolve spatial gradients
over distances on the order of the hole diameter. Majumdar's work,as
does the present research,utilizes a finite difference method with a
grid size larger than that required for a true point source calculation.
For this reason and because he does not consider the two dimensionality
of the flow in the neighborhood of the feeding holes for the concentric

journal [11].Majumdar’s claims of a "point source" solution are



apparently exaggerated. In the present work, an additional approxi-
mate condition at the feeding ho]g plane consistent with the eventual
discretizatfon is obtained from requiring conservation of mass, i.e.
requiring that the mass flow rate from each feeding hole (supply port)
be equal to the mass flow rate into a segment of fluid film at that
point. Effects due to the volume of the feeding hole are ignored.

The dimensionless expression for fully developed annular flow

in a thin film of angular width A0 is, considering flow in both

directions,
M. =m 2T S il - 9P (1+ecose*)3 de* (6)
8 8 32 or _ F}4 -
c Pa &} z ;2 g CZ

where ﬁe is the dimensional mass flow rate. The flow through the
feeding holes (supply ports) is assumed adequately represented by one-
dimensional isentropic flow with a discharge coefficient, CD’ and
effective dimensionless back pressure, PN. There is some controversy
regarding the adequacy of this kind of a nozzle flow model for gas
bearings due to effects from pressure recovery and peaking in pressure
around the discrete feeding holes. In the present work CD is regarded
as an empirical constant which can be adjusted slightly to partially
compensate for these effects as well as nozzle losses so as to produce
results acceptable for design purposes. A more significant correction
for the peaking phenomenon is described later.

The strip of angular width A@ in equation (6) is associated

8



with the flow emanating from a single hole, i.e. it is the angular
distance between dividing streamlines at z=c,. Therefore, the
additional boundary relation required can be obtained from conser-
vation of mass by equating the dimensional expression for isentropic

mass flow from a single feeding port, hN to m,, and connecting Py to

0
P(e,;z). The simplest such assumption connection the nozzle exit
pressure, PN to the film pressure, P(8,z) is that PN=P(eho]e,;2).

However, as mentioned previously, the approximate numerical procedure

to be discussed in the next section is not able to completely resolve
pressure peaking in the vicinity of the discrete feeding hole. Therefore,
at the boundary an equivalent line source boundary condition is iﬁtro-
duced which is assumed to reproduce the effect of the discrete holes

on the flow field remote from the holes. J. Lund [10] developed an
empirical correction relating the nozzle exit pressure to the equiva-

lent line source film pressure in the vicinity of the feeding holes

for equivalent mass flow. The correction as recommended in [16] is

PN = Ap(eho]e,CZ) 3 A=1.5 (7)

Majumdar [3] has been critical of such an approach and discusses
its pitfalls. Also there may be further dangers for the present
dynamic work, since the correction was developed for static calcu-
Tations. Neverihe]ess, because of its simplicity, it was chosen for
the present calculations. Majumdar's point source method [15] does
not seem to be a viable alternative unless significant computing

resources are allocated to performing computations on a dense grid;




thereby allowing the steep flow gradients in the neighborhgod of the
feeding holes to be resolved. The relation derived from conservation
of mass and equation (7) contains the pressure implicitly and is
nonlinear. An iterative scheme is necessary to apply it as a boundary

condition in the numerical solution.

10



ITI.  APPLICATION OF PERTURBATION THEORY

Perturbation Equations

A conventional perturbation method, assuming sinusoidal response
to a small sinusoidal excitation is used to simplify the governing

equations. In applying the method, it is assumed that
= it o it
where

Ho =1+ g Cos8 and H; = (zAa+B) cose

o,8 and P](e,;) are, in general, complex to reflect phase shifts
from the driving pressure. &a and §g are the amplitudes of the angu-
lar and radial displacements respectively of the vibration modes
shown in Figs. 1(a) and (b). Although coupled angular and radial
vibration will not be considered in the present calculations, the
differential equation for the perturbation quantities were derived
for this general case. Expanding equation (3), the resulting per-

turbation equations are for § < < 1}

0(50)
: 2 2.2
3P 32p
s . 3P 33P _
55 (Ho” 38 ) + Hg a(;2‘0 (8)
0(6])

11




2y 2 2 2y 2

) 7P P 3°P
3.2 0 _ 3.2 0 3,2 0
-5 Ho(r,Aa+s)cose acz > H0 Aacoss " > Ho(r,Aa+s)cose .

30 .2 apo2 .
-5 53-[H0(cAa+B)cose] ~55— - MacosePy + io (z;‘Aa+B)cosePO - (9)

where

Q= POP1 and A = R/c

In the above equations, it should be noted that symmetry requires that

Pole,z) = P'gle,c) and that equation (9) applies also to Q' = PoP'q-

Perturbation Boundary Conditions

The circumferential boundary conditions are straightforward. For
the zeroth-order differential equation, from equation (2) the expan-

sion gives

3Py (0,z) 3P (r,z) 8Py (0,2) 3Py (m,z)

Y 36 = 3 BTN =0 (10)

Also from the expansion of equation (2) the first order boundary

condition is

m,z) - 3Q' (0,z) - 3Q" (m,z) -
g_g(o,c)=g%_( c)__g_eQ g gg 0 (8)

At the edge of the film the zeroth-order condition is from expansion

of equation (4)

= p = (9)
Similarly from equation (4) the first-order condition is
0(993;3): Q|(99C3) =1 (10)

12



The boundary condition at z=z, is a bit more involved, especially
for the first-order equation.

In the numerical analysis to be discussed in the next section,
each feeding hole (supply port) is associated with a strip of width
A8 = 246 where A8 is the angular grid interval in the circumferential

direction; therefore, from equation (6)

2
- € Py 3P
8 24uRT |\ 3z

2 2

o 3
t=z, 9 z=t,

m

p=a [ )V
=

(11)

This equation represents the mass flow rate through an element of the
film of angular width 27/N = 248, where N is the number of holes
(there are two grid intervals corresponding to each hole). The equa-
tion is applied assuming H, aPz/ac and aPl /3¢ are not functions of

6 over the width of the film; they are evaluated at the mid point
of the interval 246, i.e. at the hole.

The mass flow rate fhrough the supply ports is given by

nacpa
(RT)
where -
17k Eil 172 172
_[Pn Py 2k -
A ) k=T s
S S

13



or if the flow is choked
1
e T

2
kT s |

n
K‘ .

|

¢=

=~
1
—-—

~

¢ must be converted to a linear approximaticn in order for the expan-
sion technique to work. Recall that PN is related to the film pres-
sure by equation (7). Linearizing 4 in a Taylor series expansion and

making the necessary substitutions, equation (12) becomes

. 3 A it| H
mN = 1taC]/2 CD ¢(PS’PN(PO))+ 3% ' '159 e (]3)
(RT) N'p —p (P.) 0
N 'NYO

Expanding equation (11), equating it to equation (13), and invoking
symmetry, the zeroth-order boundary condition at the holes in the

feeding plane is

3Py n/28(P 5Py (Pg))
g 2
(1+ecose)

(14)

where the feeding parameter,

12, (rT) /2

Czpa

a CD N

n:

The boundary condition described by equation (14), is nonlinear
as well as implicit and therefore an iterative scheme must be used

in applying it.

14



In addition to the condition of equation (14), a further condition

from the expansion of equation (5) is

PO(B’CZ) = Plo(eaCz) (15)

The first-order condition at the feeding plane obtained from equating

the expanded form of equation (11) with equation (13) is

3Q 3Q' n/2 20 | AQ _ 2 2P
3¢ I KL l ) 2 3Py Py Hy (ae)
z=C L=g (1+ecose)
2 2 Py=P. (P.)
N“PatPo

Although this condition is linear, it is implicit in Q since it
contains both Q and Q' and therefore must,as equation (14),be applied
in an iterative fashion.

The remaining condition to be satisfied at the feeding plane is

obtained from the expansion of
Q(e,z,) = Q'(esz,) (17)

Although the derivative boundary conditions, equations (14) and

(16) were derived for a point located at the center of a hole, by
interpolatihg between the hole locations an approximate derivative
condition can be obtained for any point along the circumference in

the feeding plane.

15



IV. EQUATIONS OF MOTION

The steady load supported by the bearing, wo can be computed
from integrating the distribution of PO. It is

Wo T %
—— = 8 r s P0 cosedzde (18)

R pa 0 C]

For linear motion with dimensionless amplitude factor 8 about the

equilibrium position €g the displacement is
y = cgse'T (19)

and the equation of motion for a journal of mass, m, supported in two
places by two physically separate bearings with separate feeding planes
as in Fig. 1 is
d2 it
m =% = - 2Fe (20)
dt
Hence, substituting equation (19) into equation (20)

= 2F
B"’ 2 (2])

dmw ¢’

where F, the amplitude of the dynamic restoring force due to the

pressure in the fluid film is computed from

t3
F LAY " \
- —5— =25 f P, cosedzde + 28 s s P' cosedzde (22)
2 1
R pa 0 C] 0 Cz

and therefore from equations (21) and (22)
4Rzpa Tor g3

™
B = 2 I s 2 P, cosedzds +f S P' cosedcde (23)

16



.Similar1y for angular motion about ¢ = 0, the angular displacement ¥,

with amplitude factor a is
¥=qge' " (24)

and employing the angular equation of motion for a configuration with
two feeding planes as in Fig. 1, symmetry about z = 0, and a mass

moment of inertia, I the angular equivalent to equation (23) is

3
R7p [ 7T, %3
5 I P] gzcosedzds + f s ° P' rcosedzds| (25)
0 ¢ 0 ¢,

Q
n

Iw

Equations (18), (23) and (25) together with the perturbation
differential equations, equations (8) and (9) and their associated
boundary conditions constitute a completely closed set of equations
for determining the response of the bearing system to oscillating .

exhaust pressure in the modes illustrated in Fig. 1.

17




V. NUMERICAL METHOD

Zeroth Order Solution

For a given eccentricity eo; the zeroth order perturbation
equation, equation (8) with its associated boundary conditions
can be solved for the unknown pressure distribution.

To solve the perturbation equations numerically, the bearing

film is discretized as shown in Fig. 3. The choice of the grid

shown was somewhat grbitrary but seemed to be a good compromise
between the resolution required and economy. The moderate angular
variation of pressure computed for the cases studied did not seem to
warrant further grid reduction in the angular direction; the suffi-
ciency of the axial grid was tested by comparing results obtained
from two different axial grid distributions.

Central differencing is applied to obtain finite difference
approximations for the zeroth-order equation. Solution of the re-
sulting difference equations with their numerical boundary conditions
are routine with the exception of the treatment of the feeding plane
boundary. As mentioned in the preceding section, an iterative solu-
tion of the system of zeroth-order equations is needed to satisfy
the feeding plane boundary conditioﬁ at L=,. A Newton-Raphson
scheme iterates on each unknown feeding hole pressure by comparing
zeroth-order flow rates through the feeding holes with those obtained
from solution of the finite difference equations for the zeroth-order

film pressure and updating the pressures until convergence is achieved.

18




Since the solution to the present problem actually requires
obtaining the eccentricity £q for a known load wo a second iterative
procedure is applied,calculating the w0 corrésponding to a series of
eo's until the known value is obtained.

Details of all the iteration and differencing techniques are

given in [17].

First-Order Solution

With the real zeroth-order solution having been determined, the
solution to the complex first-order equation, equation (9) and con-
sequently the complex amplitudes of angular and radial vibration can
be obtained. As in the case of the zeroth-order differential equa-
tion, central finite difference approximations are used fér the first-
order equation, equation (9).

In obtaining the first-order solution, the equations of motion,
equations (23) and (25) must be solved simultaneously with eguation
(9). To accomplish this a tentative valve of « (or 8) is used in
equations (9) and (16) to obtain a distribution of Q which is then
integrated using equation (25) (or (23)) to compute o (or g8). Em-
ploying a Newton-Raphson iteration scheme, the computed and tentative
values are compared to update the tentative value. Convergence is
achieved when the tentative and computed values agree. The iteration
pfocess is also used to transform the implicit boundary conditions,
equations (16) and (17) into explicit boundary conditions by lagging

3Q'/3z one iteration behind.

19



Details of the solution procedure, including the finite-

difference equations, are given in [17].

20



VI. RESULTS AND DISCUSSION

In performing the present computations, two journal masses were
considered; one with mass equivalent to the MTI journal [14] and one
with additional mass added to reduce the resonant frequency for future ex-
perimental purposes. The mass of the unmodified and the weighted
MTI journal were taken to be 2.7 and 5.4 kilograms (6 and 12 pounds)
with mass moments of inertia of 2.04 x 10-5kg—m2 and 4.27 x 155 kg-
m2 respectively. The two bearing surfaces which support the journal,
each with twelve centrally-located feeding holes were 0.0254 meters
(1 in.) wide. The feeding hole diameters were 0.000839 meters (0.035
in) and the bearing diameter was 0.0508 meters (2 in.)with a clearance
of 1.778 x 10™° meters (0.0007 in.). The three values for the supply
pressure, for which static (zeroth-order) results will be presented,
correspond to the pressures used by MTI [13] in their experiments.
However, a different set of supply pressures was selected for the

dynamic results because of limitations in the eventual dynamic experi-

ments to be performed.

Zeroth-0Order Resuylts

For each of the three values of supply pressure referred to
earlier, the zeroth-order pressure distribution and subsequently the
static load, wo were calculated for several journal deflections. The
results depicted in Fig. 4 are compared to the experimental and
theoretical results obtained by MTI [14]. As mentioned in Section II,

CD is adjusted to produce overall results acceptable for design purposes.

21



After comparing results obtained for several round number values of

D
equal to 0.7 gives good results when all three supply pressures are

Cp in a physically realistic range, it was determined that a C

considered. No further optimization was attempted since the approxi-
mate nature of the analysis does not warrant.it. From Fig. 4 it
appears that the present theory is a siight improvement over the MTI
static deflection theory, considering all three supply pressures.

This improvement can be attributed to the more detailed modeling in

the present work which considers effects such as circumferential inter-
action between the flow from individual holes, which is not included

in the MTI theory.

First-Order Results

The first-order calculations are intended to show the dynamic
response of the journal to oscillating exhaust pressure including
the location of resonant frequencies. Cdmputations were performed
for both vibrational mbdes depicted in Fig. 1. Results were obtained
showing the effects of variations in the supply pressure, journal
mass or moment of inertia, and configuration dependent changes in
' squeeze number and feeding parameter. The range of vibrational
frequencies analyzed was from 1 to 1000 Hz. The three values

considered for the supply pressure were 3.8x]05, 5.1x105 and 6.9x105

N/mz.
Table 1 summarizes the significant input and computed parameters

~ for the angular vibrational mode. In the table o* indicates the

22



value of o as w approaches zero. The factors multiplying the

squeeze number and feeding parameter indicate cases computed for
hypothetical configuration changes by substituting effective values

of these parameters in the governing equations which were in turn,
one-tenth and ten times the actual values of these parameters obtained
from the present bearing system physical constants. Stable solutions
were found for all cases computed.

For application to feciprocating mechanical cooler components,
the vibrational frequency of interest is around 30 Hz and the supply
pressure is about 3.8x105 N/mz. Therefore from Table 1, it is obvious
that for most cases in the cooler application there is little resonance
effect. This is also borne out by examination of Figs. 5 and 6 which
are Bode plots of gain versus frequency parameter, illustrating the
effects of supply pressure and journal mass moment of inertia respective-
ly on the frequency response of the journal in the angular mode. It
is also interesting to note from these figures and Table 1 that at the
low frequencies of interest the amplitude of angular displacement
increases with increasing supply pressure and journal mass moment of
inertia. As anticipated, the results show that lowering the supply
pressure and increasing the mass moment of inertia reduce the resonant
frequencies. Should the supply pressure in the space cooler appli-
cation be reduced much below 3.8x105 N/mz, resonant effects will be
significant at 30 Hz.'

Finally, it can also be demonstrated that, for the cases of

interest, the results as summarized in Table 1 indicate that journal

23



TABLE 1 Input ahdlcomputed parameters for angular vibration
with oscillating exhaust pressure

I n g a* fr
Pg eff | Yeff

e, (t2)

(kg-n") | (N/m") B
-5 S -3 "

2.0x10™°|3.8x10 n ¢ 0.116x10 72
-5 5 -4

2.0x10"°|5.1x10 n . 0.252x10 100
-5 5 =3

2.0x10™°{6.9x10 n o 0.735x10 125
-5 5 -3

4.3x107°]3.8x10 n g 0.317x10 | 42

4.3x10™°!5.1x10° n ¢ 0.530x10"% 68
-5 5 -4

4.3x1077] 6.9x10 - a 0.147x10 88

2.0x1077] 5.1x10° n 0.1c 0.252x10™% 100
-5 5 -4

2.0x10™°| 5.1x10 n 100 0.252x10 115
-5 5 -4

2.0x107°} 5.1x10° | 0.1n o 0.101x10 122
-5 5 , -4

2.0x1077 5.1x10° | 1om ¢ 0.913x10 42

n = 164.5455

24




TABLE 2 Input and computed parameters for radial vibration
with oscillating exhaust pressure

£
o ps ne.f.f o'e.n".f B* T
kg) | @/a®) | - (Hz)
5 -1
2.7 [3.8x10 n o 0.796x10 430
5 -1 .
2.7 |5.1x10 n . 0.181x10 575
2.7 l6.9x10° n o 0.535x10™2 715
5.4 [3.8x10° | 1 - 0.201x10° 285
5 , -1
5.4 |s.1x10 n s 0.377x10 400
5 -1
5.4 |6.9x10 n o 0.106x10 505
2.7 |s.1x10° . 0.1c 0.181x10™t 560
2.7 |5.1x10° n 100 0.181x10~t 660
2.7 {5.1x10° | 0.1n o 0.745x10™2 665
5 -1 .
2.7 |5.1x10 10n o 0.449x10 270
n = 14.5455

25




contact with the sleeve of the MTI bearing will not occur if the
bearing is subjected to low-frequency oscillating exhaust pressures
in the range even marginal application of pertubation theory, i.e.
for &8 < 1.

Table 2 summarizes the significant input and computed parameters
for the radial vibration mode. The vibrational amplitudes are less
than in the angular mode. The resonant frequencies computed differ
somewhat from the classical results based on static stiffness due to
the squeeze and compressibility effects described in early work by
Mullan and Richardson [6]. Figure 7 is a Bode plot illustrating the
effect of supply pressure on frequency response for the radial mode.
The trends shown in tﬁe radial results are essentially those observed

in the angular results.
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VII. SUMMARY AND CONCLUSIONS

The results presented herein indicate that classical pertubation
theory gas bearing analysis can be successfully applied to predict
the dynamic response of statically-loaded inherently compensated hydro-
static gas bearings to oscillating exhaust pressures for both angular
and radial vibration modes. The method developed uses a line source
approximation with a mass flow correction factor in the numerical
analysis. The resolution needed for a true point source calculation
would require excessively large finite difference grid line densities.

The static calculations show good agreement with experiment and
previous theoretical work. The dynamic calculations indicate that
the bearing configuration of interest does not approach resonant
conditions or contact the sleeve. Further, the amplitude of displace-
ment increases with increasing journal mass and supply pressure, and
is greater for angular than for radial vibration. Experimental work
is in progress to verify the numerical results. Experimental con-
firmation is especially needed to support the results of the dynamic

calculations.
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FIGURE CAPTIONS
Modes of vibration due to oscillating supply or
oscillating exhaust pressure
Bearing geometry and coordinate system
Grid for finite difference approximations
Load versus eccentricity curves
Effect' of supply pressure on frequency response
for angular vibration with oscillating exhaust
(I = 2.04x10-5 kg-m?)
Effect of mass moment of inertia on frequency
response for angular vibration with oscillating
exhaust (p, = 3.8x105 N/m2)
Effect of supply pressure' on frequency response

for radial vibration with oscillating exhaust
(m = 2.7 kg) :
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Fig. 1 Modes of vibration due to osecillating supply or
oscillating exhaust pressure
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Fig. 2 Bearing geometry and coordinate system
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Fig. 5 Effect of supply pressure on frequency
response for angular vibration with 9
oscillating exhaust (I = 2.04x107° kg-m")
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Fig. 6 Effect of mass moment of inertia on
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Fig. 7 Effect of supply pressure on frequency -
response for radial vibration with oscillating
exhaust (m = 2.7 kg)




